Algae beads: a ‘round’ way to remove nutrient and recover energy

Dr Raffaella Villa
Microalgal wastewater treatment: is it possible in the UK?

- Wastewater
- Residual N and P
- Algal treatment
- Clarified Water
- Raceway Algae Pond
- Harvesting unit
- Pre-treatment
- Anaerobic Digestion
- Energy generation
- Double the size in winter to accommodate reduced hours of light
- Potentially high energy input
- Possible energy recovery?

- Possible energy recovery?
Do they work for low nutrient remediation?
Low energy harvesting system: BDAF

BDAF - Ballasted Dissolved Air Flotation (0.04 kWh m⁻³)

- Sludge scraper
- Floc & bead aggregate
- Hydrocyclone to separate floc and bead
- Separated beads leave from top & are recycled
- Flocculated material sinks to be removed from the base
- Micro beads
- New bead added to make up for any loss during recycle
- Recycled bead are introduced at base of flocculation zone
- Bead pump
- Bead recycle line
- Clarified water

60-80% less energy compare to traditional DAF
Low energy harvesting system

BDAF

DAF vs BDAF performance

S. obliquus cultivated in Jaworski Media

40% reduction on coagulant addition

Energy recovery from the waste

- Strong resistance to bacteria degradation
- Limited biogas production
- Residual intact cell after digestion (40d)

Pre-treatments to improve biogas production

Biogas potential

- WW sludge
- S. obliquus

Pre-treatments

- **TEMPERATURE**
 - Thermal: 120°C, 2 bar, 30min

- **PRESSURE**
 - Commercial enzymes: 50°C, 24h

Residual cell
Pre-treatments

- **Thermal**
 - 105°, 1 bar
 - 120°, 2 bar
 - 145°, 3 bar
 - 155°, 5 bar
 - 165°, 7 bar

- **Enzymatic**
 - Cellulase + Endogalactour.
 - Alpha amylase
 - Esterase + Protease
 - Pectinase
 - Esterase
 - Mixture

Biogas improvement: thermal treatment

![Graph showing biogas improvement with and without thermal treatment over time.](image)

The graph illustrates the biogas production (m3 kg Vs$^{-1}$) over time (d) for untreated and treated samples. The treated samples exhibit a significant increase in biogas production compared to the untreated samples. The time axis is labeled as 'time (d)' and the biogas production axis is labeled as 'Biogas (m3 kg Vs$^{-1}$)'.

- Untreated cells
- Treated (cellulase) DP40
- Treated (lipase) LP957
- Treated Mix enzymes

The treated samples show a distinct upward trend, indicating improved biogas production, while the untreated samples remain relatively flat.
Microalgal wastewater treatment: is it possible in the UK?

What is immobilisation?

- Centrifuged algal suspension
- Resin
- Algae-resin solution
- Peristaltic pump
- Curing solution
Methodology

Batch trials

Continuous trials

Algem™ Environment Modelling Labscale Photobioreactor
Microalgal wastewater treatment: nitrogen and phosphorous removal

Synthetic Wastewater

Real Wastewater

NH_4^+ and PO_4^{3-} (N:P 5) removal by algae beads (\blacktriangledown), blank beads (\blacktriangle) and suspended cells (\bullet). Wastewater only was used as control (\times) to evaluate losses by volatilisation.

Microalgal wastewater treatment: nitrogen and phosphorous removal

<table>
<thead>
<tr>
<th>Removal rates (mg·L⁻¹·h⁻¹)</th>
<th>Immobilised algae</th>
<th>Suspended cells</th>
<th>Blank beads</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic wastewater</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonium</td>
<td>0.42</td>
<td>0.24</td>
<td>0.29</td>
<td>0.13</td>
</tr>
<tr>
<td>Orthophosphate</td>
<td>0.056</td>
<td>0.108</td>
<td>0.019</td>
<td>0.007</td>
</tr>
<tr>
<td>Real wastewater</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonium</td>
<td>0.37</td>
<td></td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Orthophosphate</td>
<td>0.025</td>
<td></td>
<td>0.018</td>
<td></td>
</tr>
</tbody>
</table>
Can we re-use the beads?

Graph showing NH₄⁺-N concentration (mg/L) over time (h) for Cycle 1, Cycle 2, and Cycle 3, with points indicating degradation over time.
Removal improvement in continuous (real wastewater)

- **20 h**: 0.03 mg.L\(^{-1}\)
- **12 h**: 0.17 mg.L\(^{-1}\)
- **6 h**: 0.10 mg.L\(^{-1}\)
- **3 h**: 0.43 mg.L\(^{-1}\)
...what do we do with the algal beads waste?
Do the systems compare?

Untreated cells
- Digested sludge control (S)
- S. Obliquus (cells)

Pre-treated cells
- Digested sludge control (S)
- Thermally treated cells
- E1 Depol 40
- E2 Lipomod 957
- E1+E2 MIX

Untreated beads
- Digested Sludge Control (S)
- Blank Beads (BB)
- Clean Algae Beads (CA)
- 6 days Used Algae Beads (6-UA)
- 10 days Used Algae Beads (10-UA)
- Algal Sludge Residue (AS)

Pre-treated beads
- Digested Sludge Control (S)
- Blank Beads (BB) E1
- Clean Algae Beads (CA) E1
- Algae 6 days Used Beads (6-UA) E1
- 10 days Used Algae Beads (10-UA) E1
- 6 days Used Algae Beads (6-UA) E2
What is the action of the pre-treatments do to the beads?

- Enzymes
- Thermal
How do the systems compare in terms of energy?

WWTP with a 2,000 PE and represent sites which do not currently utilise chemical dosing and include coagulation followed by either algal pond or an immobilised algal bioreactor.

BDAF

IBR with AD (no-pretreatment)

HRAP with AD (pre-treatment)

HRAP with AD (no-pretreatment)

% energy change compared to standard works

Better than standard works

The team

Prof Bruce Jefferson Rachel Whitton Marta Gomez San Juan

Dr Marc Pidou Marie Chazaux Dr Francesco Ometto
With gratitude...